pen access

Review Paper

NO₂-drived NO₃⁻ metabolism in leaves

Yanbo Hu*

College of Life Science, Northeast Forestry University, Harbin 150040, P.R. China

* Author to whom correspondence should be addressed; Email: huybhu@yahoo.com.cn

Received: 11 April 2011 / in revised form: 01 June 2011 / Accepted: 10 June 2011 / Published: 22 June 2011

Abstract: Atmospheric nitrogen dioxide (NO₂) can be dry/wet deposited into plant leaves mainly through stomata, with a small fraction of cuticle deposition. Plants in nature present a wide variation in NO₂ assimilation and the resistance. The ability of leaf NO₂ uptake and efficient remobilization of NO₂-derived NO₃⁻/NO₂⁻ is important for normal plant growth and to withstand nitrogen deprivation. Moreover, leaf- and root-derived NO₃⁻ metabolisms have both links and differences. This review emphasizes on the fates of NO₂-drived NO₃⁻, including i) the assimilation into amino acids, ii) accumulation in vacuoles, and iii) reemission by NO_x (NO and/or NO₂), and discuss metabolic differences of NO₂-drived and root-derived NO₃⁻. Special attention is drawn to NO_x evolution in apoplast and symplast of leaves and its control to stomatal dynamics. Moreover, further progress is proposed to get a better understanding of the dynamic uptake of NO₂ and NO₃⁻ transporters in leaves.

Keywords: nitrogen dioxide; nitrate reductase; nitrate metabolism; NO_x evolution; photorespiration; stomatal dynamics

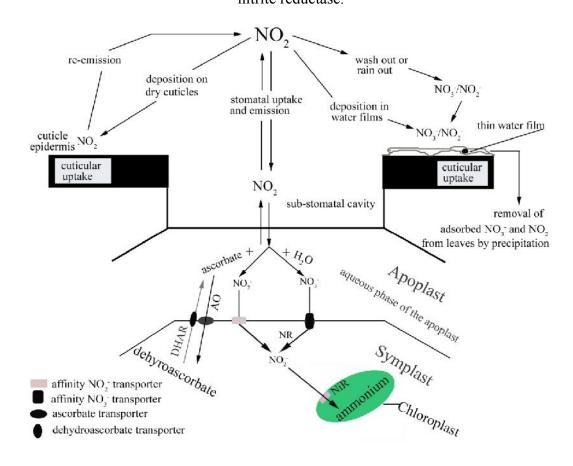
1. Introduction:

Deposition and re-emission of nitrogen dioxide (NO₂) in plant leaves is mainly through stomata. Stomatal traits such as stomatal density, dimension and conductance affect the gas exchange rates across leaf surfaces and the amount of NO₂-N incorporated into overall plant N-assimilation [33,46,17]. Small amounts of atmospheric NO₂ can be deposited on dry cuticles by irreversible adsorption or reaction with cuticle components, and/or deposited in water films of the cuticles [41].

NO₂ can also be removed from the atmosphere by rain and wash-out thereby depositing as NO₃⁻/NO₂⁻ on cuticles. Although little is known about NO₂ flux via cuticles, some evidence has suggested the significance of cuticles in controlling NO₂ deposition and re-emission [22, 16]. In recent years, research has been especially focused on (i) the diffusive processes of leaf NO₂ uptake, involving NO₂ absorption by water films of various thicknesses [12], regulation of NO₂ uptake by stomatal dynamics [11, 46], and the chemical reactions between NO₂ and apoplastic antioxidant [51], etc., and (ii) the metabolic processes of NO₂-derived NO₃⁻, including NO₃⁻/NO₂⁻ transporters, accumulation and remobilization of NO₃⁻ [58, 26], and downstream products of NO₂-N assimilation [32, 56], etc. Currently the NO₃⁻ assimilation pathway is considered to be the primary NO₂ metabolism paths [29]. Moreover, some of the current research is concentrated on NO₃⁻-specific signaling pathways; direction and intensity of the signal transmission between leaves and roots depend on ambient NO₂ concentration and N-supply status as well as other factors. In fact, there are obvious differences in physiological ramifications of NO₂-drived and root-derived NO₃⁻.

This review focuses on physiological processes of leaf NO₂ uptake and NO₂-drived NO₃⁻. The main objectives of the current review are: 1) to summarize the fates of NO₂-drived NO₃⁻ and 2) to compare the metabolic differences of NO₂-drived and root-derived NO₃⁻.

2. Fates of NO₂-drived NO₃⁻ in leaves


 NO_2 -drived NO_3^- has at least three fates in leaves: i) assimilation into amino acids, ii) accumulation in vacuoles, and iii) re-emission by NO_x (NO and/or NO_2). In general, the amount of NO_2 emission on leaf surfaces is generally lower than that of NO_2 uptake and assimilation. The three fates can interconvert at some conditions, which depend on NO_2 concentration, N-supply status and species-specific properties. NO_3^- derived from low concentrations of NO_2 is mainly used for reduction and assimilation. High NO_2 easily results in the imbalance of NO_3^- transport and assimilation, and subsequent NO_3^- accumulation.

2.1. Assimilation into amino acids

In leaves, NO₂-drived NO₃⁻ is assimilated mainly through NO₃⁻ assimilation pathway. NO₂ molecules can enter the substomatal cavities directly by gaseous diffusion. In this compartment, NO₂ molecules dissolve in the aqueous phase of the apoplastic space and are transformed by chemical reactions to nitrate (NO₃⁻) and/or nitrite (NO₂⁻). NO₃⁻ is rapidly reduced to NO₂⁻ by the enzyme NO₃⁻ reductase in the cytosol. NO₂⁻ is then reduced to NH₄⁺ by NO₂⁻ reductase in chloroplasts (Fig. 1), and eventually assimilated into amino acids (AA). NO₃⁻/NO₂⁻ reduction can induce organic acid (OA) biosynthesis in leaves [7, 1]. In addition to that, NO₃⁻ per se may also serve as a direct signal triggering production of the OA [31, 52]. Most of the newly formed OA are phloem-translocated to roots where a carboxyl group is released in exchange for a NO₃⁻ ion [19]. The amino acids generated will be used locally for the synthesis of Chlorophyll, Rubisco, and vegetative storage protein, etc. during rapid vegetative growth, or will be ultimately designated for the filling pods during pod fill. NO₃⁻ assimilation products (protein/nucleic acids and amino acids/amides) can also be transferred into roots under soil N deficit [58].

Figure 1. Processes of atmospheric NO₂ deposition (and emission) on leaf surfaces. Atmospheric NO₂ can be dry/wet deposited in leaves mainly through stomata, with a small fraction of cuticle deposition. For the route of NO₂ uptake via stomata, the reaction in apoplast is either the disproporation reaction yielding equal amounts of NO₃⁻ and NO₂⁻ and/or reaction with apoplastic ascorbate (see for details

Rennenberg and Gessler 1999) [41], and in symplast is the assimilation to amino acids. The transmembrane transport of nitrite and nitrate/ascorbate and dehydroascorbate is dependent on the affinity transporters. AO, ascorbate oxidase; DHAR, dehydroascorbate reductase; NR, nitrate reductase; NiR, nitrite reductase.

The capacity of NO₂-drived NO₃⁻ assimilation presents a wide variation between species and between individuals of a species [48]. This variation is regulated by genotype-environmental interactions. For genetic foundation, variation of genotypes in individual species tomatoes significantly affected foliar NO₃⁻ assimilation [45]. NO₂-N assimilation rate is controlled by key enzymes of the primary NO₃⁻ assimilation pathway, including NO₃⁻ reductase (NaR), NO₂⁻ reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT), etc. NO₃⁻ reductase is considered as an important rate-limiting enzyme of NO₂-N assimilation. A linear correlation was found between NaR activity, NO₂ concentration and amount of N incorporated into amino acids. However, NaR transformants of *Arabidopsis* did not show a significant increase in amount of NO₂-N incorporated into total plant N, although NaR activity of the transformants showed a significant increase in NO₂ assimilation capacity. This implies the rate-limiting role of NiR in foliar NO₂ assimilation. Moreover, metabolic and storage pools of NO₃⁻ in higher plants vary with species and physiological variables [20]. For

environmental factors, NO₂ concentration and N-supply status in the environment play roles in regulating assimilation of NO₂-drived NO_3^- and/or redistribution of the assimilation products. Research has shown that, at the same level of NO₂, NO₃⁻ reductase activity was lower in needles of the trees grown on nitrogen-phosphorus-potassium (NPK)-fertilized soil than that of grown on nonfertilized soil [55]. Meanwhile, under sufficient N-supply, NO2-drived N-compounds were utilized locally, and it did not effect the roots. However, the products of the NO₃⁻ assimilation were redistributed into roots when soil N supply becomes limiting [58]. Takahashi et al. (2005) [48] have investigated assimilation of NO₂-drived NO₃⁻ of 70 taxa of woody plants. They found that NO₂ assimilation values at 4 μ l·l⁻¹ NO₂ were higher by one or two orders of magnitude than that at 0.1 μ l·l⁻¹ NO2. Several woody species, such as Robinia pseudoacacia and Sophora japonica had high NO2 assimilation. On the other hand, other species such as Cryptomeria japonica and Thea sinensis had the low NO₂ assimilation and low NO₂ tolerance. Different responses of plant species to various concentrations of NO₂ may be ascribed partially to differences in the tolerance to NO₂⁻ accumulated in leaves and the ability to metabolize NO_2^{-} [61]. Moreover, NO_2 concentration might affect the selection of NO₃⁻ assimilation pathway. It is known that NO₂-derived NO₃⁻ is assimilated to organic nitrogenous compounds via nitrite and ammonium. The results of Srivastava and Ormrod (1984) [47] indicated that NO₃⁻ derived from low concentrations of NO₂ is assimilated primarily through GS/GOGAT pathway at low-level N supplies, while the assimilation of high NO₂-derived NO₃⁻ is mainly through glutamate dehydrogenase (GDH) pathway at high levels of nutrient N. Alternation of the two pathways partially depends on energy status of the cells. However, it is worthy of note that the main function of GDH is to deaminate glutamate [2, 9, 28]. Dubois et al. (2003) [9] concluded that physiological function of the enzyme still remains largely speculative.

2.2. Accumulation in vacuoles

NO₂-drived NO₃⁻ mainly accumulates in leaf vacuoles. The mechanisms of NO₃⁻ transport across tonoplast consist of H⁺/NO₃⁻ antiport for NO₃⁻ influx and H⁺/NO₃⁻ symport for NO₃⁻ effluxes. De Angeli *et al.* (2006) [8] have demonstrated that the NO₃⁻/proton antiporter *AtCLCa* mediated NO₃⁻ accumulation in plant vacuoles. Accumulated NO₃⁻ in vacuoles can be exported to compensate the consumption of NO₃⁻ in the metabolic pool and to maintain NO₃⁻ reductase activity. Therefore, NO₃⁻ accumulation has significance in maintaining the balance of NO₃⁻ metabolism. Leaf NO₃⁻ accumulation is regulated to a great extent by NO₃⁻ supply, light intensity, temperature, water and oxidation conditions in the soil, etc. [3, 40, 43].

High NO₂ resulted in increased accumulation of NO₃⁻ in *B. campestris* leaves [26]. The increasing accumulation might be partially attributed to the imbalance of NO₃⁻ uptake and assimilation. On one hand, leaf NO₂ deposition via stomata is driven by the gradient of NO₂ concentration between leaf interior and ambient air. Foliar NO₂ deposition rate increased with increasing NO₂ concentration, thus, high NO₂ concentrations could lead to the increase of NO₃⁻ reductase activity in leaves. On the other hand, high concentrations of the pollutant resulted in a loss of NO₃⁻ reductase activity in leaves. Decrease in NO₃⁻ reductase activity might be ascribed to the following two aspects: first, high NO₂ inhibits the activities of glutamine synthetase and glutamate synthase, which results in ammonium accumulation and subsequently brings about a loss of NO₃⁻ reductase (NaR) due to a decrease of CO₂ availability. A possible reason is that high NO₂ significantly decreases apoplastic pH, which readily results in

stomatal closure [38]. Stomatal closure may trigger a chain reaction wherein external CO_2 availability decreased and activity of NO_3^- reductase decreased rapidly in leaves [21]. Moreover, the results of Hisamatsu *et al.* (1988) [15] study indicated that NO_2 put an inhibitory effect on the light-induced NaR synthesis. In accordance with these results, Takeuchi *et al.* (1985) [50] found that NO_2 fumigation inhibited NO_3^- reductase activity in squash cotyledons, but the inhibition was recovered when the seedlings were transferred to NO_2 -free conditions.

2.3. NO_2 and NO emission on leaf surfaces

A phenomenon of NO₂ emission on leaf surfaces has been observed in many plant species, such as Scots pine [42], wheat (Triticum aestivum L.) [57], and spruce [12], when atmospheric NO₂ concentration is below NO₂ compensation point of species. NO₂ emission rate is closely correlated with ambient NO₂ concentration, UV irradiance, leaf nitrogen content [46], and/or NO₃⁻ reductase activity [41]. In the present review, our concern is whether or not NO₂-N incorporated into NO₃^{-/} NO₂⁻ can be re-emitted by NO and/or NO₂ and what are the possible mechanisms. It is known that NO_x emission on leaf surfaces mainly involves two mechanisms: 1) an enzymic conversion of NO2⁻ by NO₃⁻ reductase to NO_x (NO+NO₂); 2) nonenzymic, chemical reactions between plant metabolites and accumulated NO2⁻ and/or decomposition of nitrous acid. NO2⁻ accumulation appears to be the key and the foundation of leaf NO_x evolution. A comparison between NO_x evolution mechanisms of wild-type and nr1 mutant soybean leaves showed that high NO₂⁻ accumulation led to enzymic NO_x evolution of wide type leaves, with small amounts of nonenzymic NO_x evolution [24], and the nr1 soybean mutant nonenzymically formed and evolved NO_x under dark, anaerobic conditions. Moreover, NO₂ evolution of wild type accounted for only 1% to 2% of total NO_x evolution, whereas the nr₁ mutant evolved 15% to 30% NO₂. High concentrations of NO₂ are expected to evolve NO_x on leaf surfaces. This assumption is supported by the following facts. First, high NO2 resulted in NO2⁻ accumulation in leaves in the light [61] or in the dark [60]. A low concentration of NO₂ (0.3 μ l·l⁻¹) also led to NO₂⁻¹ accumulation of greening bean seedling leaves with nutrient NO₃⁻ supply. Second, high NO₂ fumigation can result in a loss of NO3⁻ reductase activity in leaves, which might be partially due to the depletion of excessive NO₂⁻. Third, reduction of NO₂⁻ in apoplast can nonenzymically evolve NO (Fig. 2), which the NO generation required an acid apoplast. By coincidence, NO₂ can react with apoplastic antioxidant to produce NO₂⁻. This reaction significantly increased the acidity in apoplast. This reaction may provide benefit in two ways. First, NO₂⁻-dependent NO synthesis can inhibit an accumulation of the toxic NO₂⁻ in mesophyll cells. Secondly, NO synthesis contributes to abscisic acid-induced stomatal closure, which finally controls excessive NO₂ influx into a leaf.

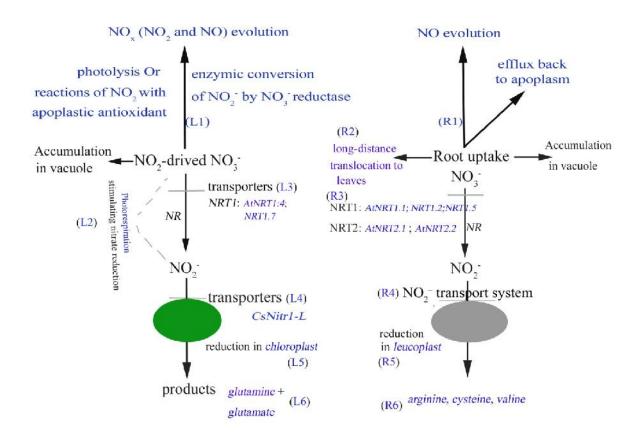
Zhou *et al.* (2003) [62] have reported that photolysis of deposited NO_3^- or HNO_3 produces NO_2 , with some HONO (nitrous acid) and NO on snow and glass surfaces. Kesselmeier *et al.* (2005) [23] found that NO_2 emission of beech was occurred in the dark when stomata were basically closed. This implies that there are other pathways of NO_2 emission occurred on leaf surfaces. Unfortunately, so far this topic has received very little attention. The related mechanisms are still unknown as well. Therefore, this topic requires further research.

Figure 2. Nitrite-dependent NO synthesis in the apoplast and/or symplast mediates stomatal closure at high concentrations of NO₂. Atmospheric NO₂ can be reduced to nitrite in the apoplast by the reaction with ascorbate or in the symplast by the reduction of nitrate. Excess nitrite will produce NO by nonenzymatic synthesis in the apoplast and by reaction with nitrate reductase in the symplast (Klepper, 1990; Bethke et al., 2004) [24, 3]. The formed NO regulates stomatal closure directly or indirectly by mediating K+ channels (Sokolovski and Blatt, 2004) [45]. FAD, flavin adenine dinucleotide; Mo-

MPT, molybdopterin; Ins(1,4,5)P3, inositol (1,4,5)-trisphosphate.

3. Metabolic differences of NO₂-drived and root-derived nitrate

Nitrate required for plant growth is derived mainly from roots for most plant species. At the current atmospheric NO_x concentrations, small accounts of NO₃⁻ can also be obtained via foliar uptake of atmosphere NO₂ [51, 46, 25]. Under various concentrations of NO₂, only a few plant species studied incorporated more than 10% of NO₂-N into total plant N [30, 54]. A special case is that *phyllospadix torreyi* (surfgrass), one of very few seagrass species grown on rocks, obtains NO₃⁻ mainly through leaves but not roots. NO₂-drived and root-derived NO₃⁻, in general, depend on NO₃⁻ metabolic pathway. However, metabolic processes of NO₂-drived and root-derived NO₃⁻ have significant differences. This is supported by at least the following four aspects (Fig. 3):


1) NO₃⁻ assimilation products (amino acids): ¹⁵NO₂ fumigation increased total content of free amino acids in leaves, shoots and roots, which the highest ¹⁵N-enrichment was detected in the α -amino group of free amino acids in the leaves and the lowest enrichment in the roots. ¹⁵NO₂-N is incorporated into various amino compounds. Nussbaum *et al.* (1993) [32] found that 13 kinds of amino acids of Norway spruce needles were labeled in the α -amino N with ¹⁵N from ¹⁵NO₂, of which ¹⁵N content of free glutamate was the highest in all the detected amino acids. Similarly Weber *et al.* (1995) [56] observed

that free glutamate in wheat (*Triticum aestivum*) was the pool with the most labeled ¹⁵NO₂-N. Pearson and Steer (1977) [37] results agreed that glutamine was the most primary one of amino acids assimilated from NO₃⁻ in leaves whereas alanine was a more important constituent of roots than of leaves. Moreover, NO₂ can produce a pronounced effect on amino acid constituent in the xylem of plants growing on low levels of NO₃⁻. Higher amounts of serine, asparagine and glutamine instead of arginine, cysteine, valine and lysine were found in the xylem of plants [58].

2) NO_3^- (or NO_2^-) transporters: three types of NO_3^- transports, NRT1, NRT2, and CLC family genes have been identified in roots. NO_3^- transporters in roots play diverse roles in NO_3^- balance in higher plants [10, 35, 53]. Various NO_3^- transporters cooperate to regulate NO_3^- uptake, accumulation and remobilization, which ensure roots efficient uptake and utilize NO_3^- . In contrast, only two members of NRT1 family, AtNRT1:4 and NRT1.7, have been identified in leaves for contribution to the NO_3^- transport. Currently, the effects of NO_3^- transporters on NO_2 -drived NO_3^- metabolism are unavailable. Moreover, NO_2^- transporters, Nar1;1 in lower plant chloroplasts and CsNitr1-L in higher plant chloroplasts, have been identified, whereas the identified nitrite affinity transporters in roots and the related regulatory genes are less reported.

3) NO_x generation: NO_x can be evolved in both plant leaves and roots by enzymatic and nonenzymatic pathways [27], which the pathway selection depends on plant species, physiological state of the plant and environmental conditions, etc. There are significant differences in the regulation of NO_x generation between the two plant organs. For the enzymatic pathway, arginine- and nitrite-dependent NO production in plants has been well demonstrated by recent documents [13, 27, 5]. It is concluded that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. Gupta et al. (2005) [13] revealed that only root mitochondria, but not leaf mitochondria are able to reduce NO₂⁻ to NO, both in vitro (isolated mitochondria) and in situ. In NaR-containing roots, the reduction of NO₂⁻ to NO was mainly dependent on the catalysation of mitochondria, and less on NaR. In contrast, NaR-free leaf slices were not able to reduce NO₂⁻ to NO. Moreover, NO₃⁻ supply affects the distribution of NO₃⁻ reductase in cytosol (cNaR) in plant organs. High external NO₃⁻ decreases cNaR activity in roots, but may increase the enzymic activity in leaves. Thus the cNaR appears to play a more important role for NO formation in leaves than in roots at sufficient NO₃⁻.

4) Photorespiration: NO_3^- assimilation in roots and leaves is closely associated with respiration process. Reductant required for root NO_3^- reduction is supplied from stored carbohydrates at considerable energetic cost [59, 14]. Excess photoreductant, in turn, can supply electrons for $NO_3^$ reduction in light-saturated leaves, minimizing the energy cost of leaf NO_3^- reduction. Recently photorespiration is coupled into the process of leaf NO_3^- assimilation. Rachmilevitch et al. (2004) [39] proposed that NO_3^- assimilation in shoots depends on photorespiration, and the effects of photorespiration on NO_3^- assimilation increase with mesophyll cell and chloroplast development. A recent review article by Hu and Sun (2010) [18] discussed the relationship between photorespiration and leaf NO_3^- assimilation, involving malate shuttle-caused chain reactions, generation and reassimilation of photorespiratory ammonia, and coupling reaction with PEPc activity. Moreover, the result of Carlson (1983) [6] showed that NO_2 fumigation reduced leaf apparent photorespiration and dark respiration. Therefore, photorespiration is assumed to have close relations with NO_2 -N metabolism, although the direct evidence is unavailable. **Figure 3.** Differences in NO₂-drived (L1-6) and root uptake (R1-6) nitrate metabolisms. The assimilation of NO₃⁻ derived from ambient NO₂ and root uptake has obvious differences in the nitrate/nitrite transporters, the location of nitrite reduction, and the assimilation products, etc.

4. Conclusion

 NO_2 -derived NO_3^- is assimilated mainly by NO_3^- metabolic pathway; the assimilation rate depends on plant growth status and environmental conditions such as atmospheric NO_2 concentration, light, and root nitrogen supply, etc. The imbalance between leaf uptake rate of NO_2 and the assimilation rate will lead to accumulation of NO_3^-/NO_2^- and NO_x reemission. Recently, more work is focused on root $NO_3^$ metabolism such as root nitrogen uptake, identification of NO_3^- transporters, and nitrogen-fixing bacteria, etc. as compared with NO_2 -derived NO_3^- metabolism. Available information indicates that leaf- and root-derived NO_3^- metabolism have significant differences in at least four aspects, including the assimilation products, NO_3^- transporters, and NO_x generation, etc. Further work is proposed to investigate the relationship between gene expression of leaf NO_3^- transporter and species-specific NO_2 uptake and the metabolic coupling of NO_2 -N, carbon, and sulphur.

Acknowledgements

This work was financially supported by Fundamental Research Funds for the Central Universities (DL10BB24). The author is grateful to Dr. A. Arivin Rivaie, and Dr. V.P. Tewari to go through the manuscript for language correction.

References

- 1. Allen S., Raven J.A., Sprent J.I. **1988** The role of long-distance transport in intracellular pH regulation in Phaseolus vulgaris growth with ammonium or nitrate as nitrogen source, or nodulated. *Journal of Experimental Botany* 39, 513–528.
- Aubert S., Bligny R., Douce R., Gout E., Ratcliffe R.G., Roberts J.K. 2001 Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by 13C and 31P nuclear magnetic resonance. *J Exp Bot* 52, 37–45.
- 3. Bethke PC, Badger MR, Jones RL **2004**. Apoplastic synthesis of nitric oxide by plant tissues. *Plant Cell* 16, 332-341.
- 4. Blevins D.G., Barnett N.M., Frost W.B. **1978** Role of potassum and malate in nitrate uptake and translocation by wheat seedlings. *Plant* Physiology 62, 784–788.
- 5. Blokhina O., Fagerstedt K.V. **2010** Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. *Physiol Plant* 138(4), 447–462.
- 6. Carlson RW **1983** Interaction between SO₂ and NO₂ and their effects on photosynthetic properties of soybean Glycine max. *Environ Pollut Ecol Biol* 32:11–38"
- 7. Davies D.D. **1986** The fine control of cytosolic pH. *Physiologia Plantarum* 67, 702–706.
- De Angeli A., Monachello D., Ephritikhine G., Frachisse J.M., Thomine S., Gambale F., Barbier-Brygoo H. 2006 The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. *Nature* 442, 939–942.
- Dubois F., Tercé-Laforgue T., Gonzalez-Moro M.B., Estavillo J.M., Sangwan R., Gallais A., Hirel B. 2003 Glutamate dehydrogenase in plants: is there a new story for an old enzyme? *Plant Physiology and Biochemistry* 41, 565–576.
- 10. Forde B.G. **2000** Nitrate transporters in plants: structure, function and regulation. *Biochimica et Biophysica Acta* 1465, 219–235.
- 11. Gessler A., Rienks M., Rennenberg H. **2000** NH₃ and NO₂ fluxes between beech trees and the atmosphere–correlation with climatic and physiological parameters. *New Phytologist* 147, 539–560.
- 12. Gessler A., Rienks M., Rennenberg H. **2002** Stomatal uptake and cuticular adsorption contribute to dry deposition of NH₃ and NO₂ to needles of adult spruce (*Picea abies*) trees. *New Phytologist* 156, 179–194.
- Gupta K.J., Stiomenova M., Kaiser W.M. 2005 In higher plants only root mitochoondria but not leaf mitochondria reduce nitrite to NO in vitro and in situ. *Journal of Experimental Botany* 56, 2601–2609.
- 14. Gutschick V.P. **1981** Evolved strategies in nitrogen acquisition by plants. *American Naturalist* 118, 607–637.
- 15. Hisamatsu S., Nihira J., Takeuchi Y.C., Satoh S., Kondo N. **1988** NO2 suppression of lightinduced nitrate reductase in squash cotyledons. *Plant and Cell Physiology* 29, 395–401.
- 16. Horii C., Munger J.W., Wofsy S.C. **2004** Fluxes of nitrogen oxides over a temperate deciduous forest. *J. Geophys. Res.* 109 10.1029/2003JD004326.
- 17. Hu Y.B., Sun G.Y., Huang Y.X. **2011** Foliar uptake of atmospheric nitrogen dioxide. The International conference on Environmental Pollution and Public Health 2011 (EI). http://www.icbbe.org/epph2011/ConferenceProgram.aspx.

- 18. Hu Y.B., Sun G.Y. **2010** Leaf nitrogen dioxide uptake coupling apoplastic chemistry, carbon/sulfur assimilation, and plant nitrogen status. *Plant Cell Reports* 29(10), 1069–1077.
- 19. Imsande J., Touraine B. **1994** N demand and the regulation of nitrate uptake. *Plant Physiology* 105, 3–7.
- 20. Izmailov S.F. **2004** Saturation and utilization of nitrate pools in pea and sugar beet leaves. Russian. *Journal of Plant Physiology* 51, 189–193.
- Kaiser W.M., Forster J. 1989 Low CO₂ prevents nitrate reduction in leaves. *Plant Physiology* 91, 970–974.
- 22. Kesselmeier J., Chaparro-Suarez I.G., Meixner F.X. **2001** Observations on the stomatal control of NO2 exchange. The Smithsonian/NASA Astrophysics Data System.
- 23. Kesselmeier J., Chaparro-Suarez I.G., Meixner F.X. **2005** Observations on the stomatal control of NO₂ exchange. The Smithsonian/NASA Astrophysics Data System
- 24. Klepper L. **1990** Comparison between NO_x evolution mechanisms of wild-type and nr1 mutant soybean leaves. *Plant Physiology* 93, 26–32.
- Liao Y.M., Chen Z.M., Chen Y.F., Du G.J. 2008 Resistance to and absorbency of gaseous NO₂ for 38 young landscaping plants in Zhejiang Province. *Journal of Zhejiang Forestry College* 25(6), 765–771.
- Ma C.Y., Xu X., Hao L., Cao J. 2007 Nitrogen dioxide-induced responses in *Brassica campestris* seedlings: the role of hydrogen peroxide in the modulation of antioxidative level and induced resistance. *Agricultural Sciences in China* 6, 1193–1200.
- 27. Małolepsza U. 2007 Nitric oxide production in plants. Postepy Biochem 53(3), 263–271.
- Masclaux-Daubresse C., Reisdorf-Cren M., Pageau K., Lelandais M., Grandjean O., Kronenberger J., Valadier M.H., Feraud M., Jouglet T., Suzuki A. 2006 Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco. *Plant Physiology* 140, 444–456.
- Morikawa H., Takahashi M., Sakamoto A., Matsubara T., Arimura Gen-Ichiro, Kawamura Y., Fukunaga K., Fujita K., Sakurai N., Hirata T., Ide H., Nonoyama N., Suzuki H.
 2004 Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism. *Planta* 219, 14–22.
- Morikawa H., Higaki A., Nohno M., Takahashi M., Kamada M., Nakata M., Toyohara G., Okamura Y., Matsui K., Kitani S. **1998** More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. *Plant Cell Environ* 21, 180–190.
- Morita A., Tuji M. 2002 Nitrate and oxalate contents of tea plants (Camellia sinensis L.) with special reference to types of green tea and effect of shading. *Soil Science and Plant Nutrition* 48, 547–553.
- Nussbaum S., Ballmoos P.v, Gfeller H., Schlunegger U.P., Fuhrer J., Rhodes D., Brunold C. 1993 Incorporation of atmospheric ¹⁵NO₂-nitrogen into free amino acids by Norway spruce *Picea abies* (L.) Karst. *Oecologia* 94, 408–414.
- 33. Okano K., Machida T., Totsuka T. **1988** Absorption of atmospheric NO₂ by several herbaceous species: estimation by the 15N dilution method. *New Phytol* 109, 203–210.
- Orebamjo T.O., Stewart G.R. 1975 Ammonium inactivation of nitrate reductase in Lemna minor L. *Planta* 122, 37–44.

- Orsel M., Chopin F., Leleu O., Smith S.J., Krapp A., Daniel-Vedele F., Miller A.J. 2006 Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. *Plant Physiology* 142, 1304–1317.
- 36. Padidam M., Venkateswarlu K., Johri M.M. **1991** Ammonium represses NADPH nitrate reductase in the moss *Funaria hygrometrica*. *Plant Science* 75, 185–194.
- 37. Pearson C.J., Steer B.T. **1977** Daily changes in nitrate uptake and metabolism in Capsicum annuum. *Planta* 137, 102–112.
- 38. Qiao Z., Murray F. **1998** The effects of NO₂ on the uptake and assimilation of nitrate by soybean plants. *Environmental and Experimental Botany* 10, 33–40.
- 39. Rachmilevitch S., Cousins A.B., Bloom A.J. **2004** Nitrate assimilation in plant shoots depends on photorespiration. *Proc Natl Acad Sci USA* 101, 11506–11510.
- Reed A.J., Canvin D.T., Sherrard J.H., Hageman R.H. **1983** Assimilation of [¹⁵]N nitrate and [¹⁵N] nitrite in leaves of five plant species under light and dark conditions. *Plant Physiology* 71, 291–294.
- 41. Rennenberg H., Gessler A. **1999** Consequences of N deposition to forest ecosystems-recent results and future research needs. *Water, Air, & Soil Pollution* 116, 47–64.
- 42. Rondón A., Granat L. **1994** Studies on the dry deposition of NO₂ to coniferous species at low NO₂ concentrations. *Tellus* 46B, 339–352
- 43. Roorda Van Eysinga J.P.N.L. 1984 Nitrate and glasshouse vegetables. Fert Res 5, 149–156.
- 44. Ruiz J.M. Romero L. **1998** Tomato genotype in relation to nitrogen utilization and yield. *Journal of Agricultural and Food Chemistry* 46, 4420–4422.
- 45. Sokolovski S, Blatt MR **2004** Nitric oxide block of outward rectifying K⁺ channels indicates direct control by protein nitrosylation in guard cells. *Plant Physiol* 136, 4275-4284.
- 46. Sparks J.P., Monson R.K., Sparks K.L., Lerdau M. **2001** Leaf uptake of nitrogen dioxide (NO₂) in a tropical wet forest: implications for tropospheric chemistry. *Oecologia* 127, 214–221.
- 47. Srivastava H.S., Ormrod D.P. **1984** Effects of nitrogen dioxide and nitrate nutrition on growth and nitrate assimilation in bean leaves. *Plant Physiology* 76, 418–423.
- Takahashi M., Higaki A., Nohno M., Kamada M., Okamura U., Matsui K., Kitani S., Morikawa H. 2005 Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. *Chemosphere* 61, 633–639.
- 49. Takahashi M, Sasaki YIdaS, Morikawa H **2001** Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. *Plant Physiology* 126: 731–741.
- Takeuchi Y.C., Nihira J., Kondo N., Tezuka T. 1985 Change in Nitrate-Reducing Activity in Squash Seedlings with NO2 Fumigation. *Plant and Cell Physiology* 26, 1027–1035.
- 51. Teklemariam T.A., Sparks J.P. **2006** Leaf fluxes of NO and NO₂ in four herbaceous plant species: the role of ascorbic acid. *Atmospheric Environment* 40, 2235–2244.
- 52. Tian H., Jiang L.R, Liu E., Zhang J.J., Liu F., Peng X.X. **2008** Dependence of nitrate-induced oxalate accumulation on nitrate reduction in rice leaves. *Physiologia Plantarum* 133, 180–189.
- 53. Tsay Y.F., Chiu C.C., Tsai C.B., Ho C.H., Hsu P.K. **2007** Nitrate transporters and peptide transporters. *FEBS Letter* 581, 2290–2300.
- 54. Vallano D.M., Sparks J.P. **2008** Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar ¹⁵N values. *New Phytol* 177, 946–955.

- 55. von Ballmoos P., Ammann M., Egger A., Suter M., Brunold C. **1998** NO₂-induced nitrate reductase activity in needles of Norway spruce (*Picea abies*) under laboratory and field conditions. *Physiologia Plantarum* 102(4), 596–604.
- 56. Weber P., Nussbaum S., Fuhrer J., Gfeller H., Schlunegger U.P., Brunold C., Rennenberg H. 1995 Uptake of atmospheric ¹⁵NO₂ and its incorporation into free amino acids in wheat (*Triticum aestivum* L.). *Physiologia Plantarum* 94, 71–77.
- Weber P., Rennenberg H. **1996** Dependency of nitrogen dioxide (NO₂) fluxes to wheat (*Triticum aestivum* L.) leaves from NO₂ concentration, light intensity, temperature and relative humidity determined from controlled dynamic chamber experiments. *Atmospheric Environment* 30, 3001–3009.
- 58. Wellburn A.R. **1990** Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? *New Phytologist* 115, 395–429.
- Woo K.C., Jokinen M., Canvin D.T. **1980** Reduction of nitrate via a dicarboxylate shuttle in reconstituted system of supernatant and mitochondria from spinach leaves. *Plant Physiology* 65, 433–436.
- 60. Yoneyama T., Sasakawa H. **1979** Transformation of atmospheric NO₂ absorbed in spinach leaves. *Plant and Cell Physiology* 20, 263–266.
- 61. Yu S.W., Li L., Shimazaki K.I. **1988** Response of spinach and kidney bean plants to nitrogen dioxide. *Environmental Pollution* 55, 1–13.
- 62. Zhou X., Gao H., He Y., Huang G., Bertman S.B., Civerolo K., Schwab J. **2003** Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. *Geophysical Research Letters* 30, 2217.

© 2011 by the authors; licensee Insciences Journal.

Open Access article under the terms and conditions of Creative Commons Attribution Non-Commercial License 3.0 Unported.